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Abstract

Let g be a Kähler metric on Cn and letHΦ be the complex Hilbert space consisting of global holomorphic functions f on Cn

such that∫
Cn

e−Φ
| f |

2dµ(z) < ∞,

where Φ : Cn
→ R is a Kähler potential for g and dµ(z) is the standard Lebesgue measure on Cn . In this paper we prove that if

(1) g is balanced with respect to the Euclidean metric, (2) Φ(z) = g1(|z1|
2) + · · · + gn(|zn |

2) and (3) z j1
1 · · · z jn

n belong to HΦ ,
for all non-negative integers j1, . . . jn , then, up to biholomorphic isometries, g equals the Euclidean metric. The proof is based on
Calabi’s diastasis function and on the characterization of the exponential function due to Miles and Williamson.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and statement of the main result

Let M be a n-dimensional complex manifold and let g be a Kähler metric on M polarized with respect to a
holomorphic line bundle L over M , i.e. c1(L) = [ω], where ω denotes the Kähler form associated with g. Further, let
h be a Hermitian metric on L such that its Ricci curvature Ric(h) = ω, where Ric(h) is the two form on M whose
local expression is given by

Ric(h)(x) = −
i
2
∂∂̄ log h(σ (x), σ (x)), (1)

for a trivializing holomorphic section σ : U → L . In the quantum mechanics terminology L is called the quantum
line bundle and the pair (L , h) is called a geometric quantization of the Kähler manifold (M, g) (see e.g. [1]). Let g0
be another Kähler metric on M . Consider the separable complex Hilbert spaceHh,g0 consisting of global holomorphic
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sections s of L which are bounded with respect to

〈s, s〉h,g0 =

∫
M

h(s(x), s(x))
ωn

0
n!
, (2)

where ω0 is the Kähler form associated with g0.
Assume that for each point x ∈ M there exists s ∈ Hh,g0 non-vanishing at x . Then one can consider the following

holomorphic map into the N -dimensional (N ≤ ∞) complex projective space:

ϕ(h,g0) : M → CP N
: x 7→ [s0(x), . . . , sN (x)], (3)

where s j , j = 0, . . . , N , is a orthonormal basis for (Hh,g0 , 〈·, ·〉h,g0). In the case where N = ∞, CP∞ define the
quotient space of l2(C) (the space of sequences z j such that

∑
∞

j=1 |z j |
2 < ∞), where two sequences z j and w j are

equivalent iff there exists λ ∈ C∗ such that λz j = w j ,∀ j .
We say that the metric g is (h, g0)-balanced (or simply g0-balanced when the Hermitian metric is clear from the

context) if ϕ∗

(h,g0)
(gFS) = g, or equivalently

ϕ∗

(h,g0)
(ωFS) = ω, (4)

where gFS is the Fubini–Study metric on CP N and ωFS its associated Kähler form. (Note that this definition is
independent of the choice of the orthonormal basis.) Therefore, if g is a g0-balanced metric, then g is projectively
induced via the map (3). In the case where a metric g is g-balanced, one simply calls g a balanced metric. (For the
balanced metrics the map ϕ(h,g) was introduced by Rawnsley [19] in the context of quantization of Kähler manifolds
and it is often referred to as the coherent states map.)

The balanced and g0-balanced metrics are important for the theories of quantization of Kähler manifolds and
for the stability of complex vector bundles (see e.g. [1,2] and the reference therein). They are also deeply related
to Kähler–Einstein metrics [20–22] and to the existence and uniqueness of extremal and constant scalar curvature
metrics [4,5,16,17].

In the compact case the existence and the uniqueness of balanced (resp. g0-balanced) metrics have been studied in
[2,4,5] (resp. [23,24]).

The study of balanced and g0-balanced metrics in the noncompact case is a very fruitful area of research (see [2,6,
10,11,13–15,19]). Nevertheless many questions on the uniqueness of balanced metrics are still open. For example, it
is not known whether there exists a complete balanced metric on Cn different from the Euclidean one.

In this paper we study the g0-balanced metrics g on Cn , when g0 = geucl, the standard Euclidean metric on Cn .
Observe that any holomorphic line bundle on Cn is holomorphically trivial. Therefore we can assume, without loss of
generality, that L = Cn

× C. Further, there exists a real valued function Φ on Cn (a Kähler potential for g) such that
ω =

i
2∂∂̄Φ. Finally, observe that the function e−Φ defines a Hermitian metric h on L on setting

h(z, t) = e−Φ(z)
|t |2, z ∈ Cn, t ∈ C.

It follows by (1) that the pair (L , h = e−Φ) is indeed a geometric quantization of the Kähler manifold (Cn, g). In
the case where g0 equals the Euclidean metric geucl, the Hilbert space Hh,g0 consists of all holomorphic functions
f : Cn

→ C (i.e. holomorphic sections of L) such that∫
Cn

e−Φ
| f |

2dµ(z) < ∞,

where dµ(z) =
in
2n dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n is the standard Lebesgue measure on Cn . In the sequel, we denote this

Hilbert space byHΦ and the map (3) by ϕΦ .

Example 1.1. Let Φ(z) = |z|2 = |z1|
2

+ · · · + |zn|
2 and h = e−|z|2 . Then the Hilbert space HΦ(Φ(z) = |z|2)

consists of all the holomorphic functions on Cn such that
∫
Cn e−|z|2

| f |
2dµ(z) < ∞. One can easily verify that

zm j
√
πnm j !

, j = 0, . . . is an orthonormal basis of HΦ , where m j ! = m j1 ! · · · m jn ! (see Remark 2.3 below for the
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notation). Therefore the map (3) in this case is given by

ϕΦ : Cn
→ CP∞

: z = (z1, . . . , zn) 7→

[
. . . ,

zm j√
πnm j !

, . . .

]
.

Thus,

ϕ∗

Φ(gFS) =
i
2
∂∂̄ log

(
1
πn

+∞∑
j=0

|z|2m j

m j !

)
=

i
2
∂∂̄ log e|z|2

= ωeucl

and so g is a geucl-balanced (even balanced) metric.

The main result of this paper is the following:

Theorem 1.2. Let g be a g0-balanced metric on Cn where g0 = geucl and let (L , h = e−Φ) be a geometric
quantization of (Cn, g) as above. Assume that:

(i) the metric g admits a (globally) defined Kähler potential Φ of the form

Φ(z) = g1(|z1|
2)+ · · · + gn(|zn|

2), (5)

where g j : R → R, j = 1, . . . , n, and z = (z1, . . . , zn) are the Euclidean coordinates on Cn;
(ii) z j1

1 · · · z jn
n belong toHΦ , for all non-negative integers j1, . . . jn .

Then, up to biholomorphic isometries, g = geucl.

Remark 1.3. Notice that the metric g0 only enters in the proof of Theorem 1.2 through its volume. Indeed, from its
proof (see Section 3) it follows that the hypothesis on g0 of being the Euclidean metric can be replaced by the weaker
assumption that g0 is a Kähler metric on Cn having the same volume form of the Euclidean metric, i.e. satisfying

ωn
0(z)
n!

= dµ(z). (6)

In this regard, it is worth pointing out that there exist examples of noncomplete Kähler metrics g0 on Cn (n ≥ 2)
satisfying Eq. (6) and it is conjecturally true that the only complete metric on Cn satisfying this equation is the
Euclidean one (see [25]).

Despite the very strong assumption (5) on the Kähler potential, the proof of our theorem is far from being trivial.
Indeed, it is based on: (1) Calabi’s diastasis function (see Section 2) which comes into the game due to the fact that
g0-balanced metrics are projectively induced, namely they satisfy Eq. (4); (2) a characterization of the exponential
function (see Section 3) which has been an open conjecture for almost twenty years and was finally proved in 1986
by Miles and Williamson [18].

The paper is organized as follows. In Section 2 we describe Calabi’s work on the diastasis and on the holomorphic
and isometric immersions into complex projective spaces. In particular we get Lemma 2.8 which is one of the main
ingredients in the proof of Theorem 1.2. In Section 3 we recall the characterization of the exponential function due to
Miles and Williamson, we obtain Lemma 3.1, Corollary 3.2 and we prove our main result Theorem 1.2.

2. Calabi’s diastasis function

In his seminal paper Calabi [3] gave a complete answer to the problem of the existence and uniqueness of
holomorphic and isometric immersions of a Kähler manifold (M, g) into a finite or infinite dimensional complex
projective space (CP N , gFS), N ≤ ∞, where gFS denotes the Fubini–Study metric on CP N (see Example 2.2 below).

Calabi’s first observation was that if a holomorphic and isometric immersion (M, g) into a complex projective
space exists then the metric g is forced to be real analytic being the pull-back via a holomorphic map of the real
analytic metric gFS. Then in a neighborhood of every point p ∈ M , one can introduce a very special Kähler potential
Dg

p for the metric g, which Calabi named diastasis. Recall that a Kähler potential for a smooth metric g is a smooth
function Φ defined in a neighborhood of a point p such that ω =

i
2 ∂̄∂Φ, where ω is the Kähler form associated with
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g. A Kähler potential is not unique: it is defined up to an addition of the real part of a holomorphic function. If the
metric g is real analytic, then Φ can taken real analytic. In this case, by duplicating the variables z and z̄ a potential
Φ can be complex analytically continued to a function Φ̃ defined in a neighborhood U of the diagonal containing
(p, p̄) ∈ M × M̄ (here M̄ denotes the manifold conjugate to M). The diastasis function is the Kähler potential Dg

p
around p defined by

Dg
p(q) = Φ̃(q, q̄)+ Φ̃(p, p̄)− Φ̃(p, q̄)− Φ̃(q, p̄).

Example 2.1. Let geucl be the Euclidean metric on CN , N ≤ ∞, namely the metric whose associated Kähler form
is given by ωeucl =

i
2
∑N

j=1 dz j ∧ dz̄ j . Here C∞ is the complex Hilbert space l2(C) consisting of sequences
z j , j = 1 . . . , z j ∈ C such that

∑
+∞

j=1 |z j |
2 < +∞. The diastasis function Dgeucl

p : CN
→ R around p ∈ CN is

given by the square of the distance between p and q , i.e. Dgeucl
p (q) =

∑N
j=1 |p j − q j |

2.

Example 2.2. Let (Z0, Z1, . . . , Z N ) be the homogeneous coordinates in CP N , N ≤ ∞, and let p = [1, 0, . . . , 0]. In
the affine chart U0 = {Z0 6= 0} endowed with coordinates (z1, . . . , zn), z j =

Z j
Z0

the diastasis around p reads as

DgFS
p (z) = log

(
1 +

n∑
j=1

|z j |
2

)
. (7)

A very useful characterization of the diastasis can be obtained as follows. Let (z) be a system of complex
coordinates in a neighbourhood of p where Dg

p is defined and consider its power series development:

Dg
p(z) =

∑
j,k≥0

a jk(g)zm j z̄mk . (8)

Remark 2.3. Here, and throughout this paper, we are using the following convention: we arrange every n-tuple of non-
negative integers as the sequence m j = (m1, j ,m2, j , . . . ,mn, j ) j=0,1,... such that m0 = (0, . . . , 0), |m j | ≤ |m j+1|,
with |m j | =

∑n
α=1 mα, j and zm j =

∏n
α=1(zα)

mα, j . Further, we order all the m j ’s with the same |m j | using the
lexicographic order in the variables (z1, . . . , zn). Our notation (due to Calabi [3]) is more suitable for describing the
matrices appearing in (8) and (9) below than the usual multi-index notation.

Characterization of the diastasis: Among all the potentials the diastasis is characterized by the fact that in every
coordinates system (z) centered in p the coefficients a jk(g) of the expansion (8) satisfy a j0(g) = a0 j (g) = 0 for every
non-negative integer j .

The diastasis function is the key tool for studying holomorphic and isometric immersions (i.e. Kähler immersions)
into finite or infinite dimensional complex projective spaces due to its hereditary property:

Theorem 2.4 (Calabi [3]). Let (M, g) be a Kähler manifold which admits a Kähler immersion ϕ : (M, g) →

(CP N , gFS), N ≤ ∞. Then

(1) the metric g is real analytic;
(2) DgFS

ϕ(p) ◦ ϕ = Dg
p, where both sides are defined.

One of the main ingredients in the proof of our Theorem 1.2 is Theorem 2.7 and its corollary (Lemma 2.8) below,
which goes deeply to the heart of the problem we are dealing with. In order to state it we need some definitions due
to Calabi.

Definition 2.5. A holomorphic and isometric immersion ϕ of (M, g) into (CP∞, gFS) is said to be full if ϕ(M) is not
contained in a proper complex projective subspace of CP∞.

Definition 2.6. Consider the function eDg
p − 1 and its power series development:

eDg
p − 1 =

∑
j,k≥0

b jk(g)zm j z̄mk . (9)

The metric g is said to be ∞-resolvable at p if the ∞ × ∞ matrix b jk(g) is positive semidefinite and of infinity rank.
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Theorem 2.7 (Calabi). Let M be a complex manifold endowed with a real analytic Kähler metric g.

(i) A neighbourhood of a point p admits a full holomorphic and isometric immersion into (CP∞, gFS) if and only if
g is ∞-resolvable at p.

(ii) Two full holomorphic and isometric immersions ϕ : (M, g) → (CP∞, gFS) and ψ : (M, g) → (CP∞, gFS) are
congruent, i.e. there exists an unitary transformation U of (CP∞, gFS) such that U ◦ ϕ = ψ .

The previous theorem can be applied when one has the explicit expression of the diastasis function and when the
matrix b jk(g) in Definition 2.6 is not too complicated. In some very special cases like for the complex space forms [3]
or for Hartogs domains [12] or more generally when the diastasis is rotation invariant, namely it depends only on
|z1|

2, . . . , |zn|
2, the matrix b jk(g) (given by (9)) is diagonal, i.e.

b jk(g) = b jδ jk, b j ∈ R. (10)

In this case (i) of Theorem 2.7 reads:

Lemma 2.8. Let g be a real analytic Kähler metric on a complex manifold M and assume that there exist complex
coordinates in a neighborhood of a point p ∈ M such that its diastasis function Dg

p : U → R is rotation invariant.
Then there exists a holomorphic and isometric immersion ϕ of (U, g) into (CP∞, gFS) if and only if all the b j ’s given
by (10) are greater or equal than 0 and an infinite number of them are positive.

3. A characterization of the exponential and the proof of Theorem 1.2

Let

f (t) =

∑
j

b j tm j , tm j = t
m j1
1 · · · t

m jn
n (11)

be an entire function (see Remark 2.3 for the multi-index notation). Assume that

b0 = 1, b j > 0, ∀ j (12)

and ∫
Rn

+

b j tm j

f (t)
dt = 1, ∀ j, (13)

where Rn
+ = {(t1, . . . , tn) ∈ Rn

: ti ≥ 0,∀i} and dt = dt1 · · · dtn . When n = 1 it is straightforward to verify that
conditions (11) and (13) are satisfied by the exponential function et . Rényi and Vincze conjectured that et is the only
such function ([7], Problem 2.32). Some partial results were obtained by various authors (see [8,9]). Finally, Miles
and Williamson [18] gave a positive answer to the conjecture of Rényi and Vincze. For n ≥ 2 the classification of all
the functions satisfying the above conditions is a challenging problem. In the case where f (t) is a product, i.e.

f (t1, . . . , tn) = g1(t1) · g2(t2) · · · · · gn(tn) (14)

where g j : R → R, j = 1, . . . , n, by using the above theorem of Miles and Williamson we have the following:

Lemma 3.1. Assume f (t) is a real valued function on Rn satisfying (11)–(14). Then there exist positive constants
c1, c2, . . . , cn with c1 · c2 · · · · · cn = 1 such that

f (t1, . . . , tn) = ec1t1+c2t2+···+cn tn . (15)

Proof. In order to prove the lemma we use the standard multi-index notation. So, let I = (i1, . . . , in) be a multi-index
of non-negative integers. Conditions (11)–(13) read

f (t) =

∑
I

BI t I , BI = Bi1,...,in , (16)

B0 = B0,...,0 = 1, BI > 0, ∀I (17)



1120 F. Cuccu, A. Loi / Journal of Geometry and Physics 57 (2007) 1115–1123

and ∫
Rn

+

BI t I

f (t)
dt = 1, ∀I. (18)

Set

ci =

(∫
∞

0

gi (0) dti
gi (ti )

)−1

and hi (si ) =
gi (

si
ci
)

gi (0)
for i = 0, 1, . . . , n.

Note that we have c1 · c2 · · · cn = 1 by

g1(0) · g2(0) · · · gn(0) = f (0) = 1

and ∫
∞

0

dt1
g1(t1)

·

∫
∞

0

dt2
g2(t2)

· · ·

∫
∞

0

dtn
gn(tn)

= 1.

The proof of the lemma will be obtained if we show that

hi (si ) = esi . (19)

Indeed this is equivalent to gi (ti ) = gi (0)eci ti , which, combined with (14), implies (15). In order to prove (19) observe
that by (16) the power series of hi is

hi (si ) =
gi (

si
ci
)

gi (0)
=

1
gi (0)

∏
j 6=i

g j (0)
f
(

0, . . . ,
si

ci
, . . . , 0

)

= f
(

0, . . . ,
si

ci
, . . . , 0

)
=

∞∑
k=0

Bk
sk

i

ck
i
,

where Bk = B0,...,0,k,0,...,0. Since by (17) B0 = 1 and Bk
ck

i
> 0 ∀k = 1, 2, . . ., in order to apply the above mentioned

theorem of Miles and Williamson one needs to verify the following equalities:∫
∞

0

sk
i

hi (si )
dsi =

ck
i

Bk
, ∀k = 1, 2, . . . . (20)

Indeed, by the change of variable ti = si/ci and by assumption (18) one gets∫
∞

0

sk
i

hi (si )
dsi =

∫
∞

0

ck
i tk

i ci dti
hi (ti ci )

= ck
i ci gi (0)

∫
∞

0

tk
i

gi (ti )
dti

= ck
i

∫
∞

0

dt1
g1(t1)

·

∫
∞

0

dt2
g2(t2)

· · ·

∫
∞

0

tk
i dti

gi (ti )
· · ·

∫
∞

0

dtn
gn(tn)

= ck
i

∫
Rn

+

tk
i dt
f (t)

=
ck

i
Bk
, ∀k = 1, 2, . . . .

We are interested in a slightly general assumption on f (t), namely instead of (13) we assume that∫
Rn

+

λ b j tm j

f (t)
dt = 1, ∀ j (21)

for some fixed λ > 0. As a consequence of the previous lemma one gets the following corollary which, together with
Lemma 2.8 above, is one of the main ingredients in the proof of Theorem 1.2. �

Corollary 3.2. If f (t) satisfies (11), (12), (14) and (21) for some λ > 0 then there exist positive constants
c1, c2, . . . , cn with c1 · c2 · · · cn = λ such that

f (t1, . . . , tn) = ec1t1+c2t2+···+cn tn .
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Proof. Consider the function h(s) = f (s/ n√
λ). We claim that h(s) satisfies the four hypotheses of the previous

lemma. Indeed h(s) is an entire function with

h(s) =

∑
j

b j

λ|m j |/n sm j , b0 = 1, b j > 0,

and so (11) and (12) hold true for h(s). By the change of variables t = s/ n√
λ and by (21) we get∫

Rn
+

b j sm j

λ|m j |/nh(s)
ds =

∫
Rn

+

λb j tm j

f (t)
dt = 1, ∀ j.

Thus (13) is valid for h(s). Obviously, by (14), h(s) splits as

h(s) = g1(s1/
n√
λ) · · · gn(sn/

n√
λ).

Therefore, by Lemma 3.1 we have

h(s) = ed1s1+d2s2+···+dnsn

with di > 0 for each i , and d1 · d2 · · · dn = 1. Setting ci =
n√
λdi we conclude that

f (t) = h( n√
λt) = ec1t1+c2t2+···+cn tn ,

with c1 · c2 · · · cn = λ. �

Proof of Theorem 1.2. The Kähler metric g is g0-balanced (g0 = geucl) if there exists a sequence of holomorphic
functions f j on Cn , with

∑
j | f j |

2
6= 0, which are an orthonormal basis forHΦ , i.e.∫

Cn
e−Φ f j fkdµ(z) = δ jk (22)

and such that

ϕ∗

Φ(ωFS) =
i
2
∂∂̄ log

(
∞∑
j=0

| f j |
2

)
= ω (23)

where the map ϕΦ : Cn
→ CP∞ is given by taking the equivalence class [. . . , f j , . . .] ∈ CP∞ of (. . . , f j , . . .) ∈

l2(C) \ {0} (see (3)). Observe also that ϕΦ is full since the f j ’s are linearly independent. By hypothesis (ii) the
constant functions belong toHΦ and so we can assume that f0 = 1. Further, without loss of generality, up to a unitary
transformation of CP∞, we can assume that

ϕΦ(0, . . . , 0) = [1, 0, . . . , 0]. (24)

From (23) and Theorem 2.4 the metric g is real analytic and the diastasis function of the metric g around the origin is
given by

Dg
0 (z) = log

(
1 +

∞∑
j=1

| f j (z)|2
)
. (25)

Assumption (5) implies that its Taylor expansion at the origin is of the form

Φ(z) =

∞∑
j=0

a j |z|2m j , z = (z1, . . . , zn), a j ∈ R.

It follows by the characterization of the diastasis (after Remark 2.3 in Section 2) that the function D : Cn
→ R given

by D(z) = Φ(z) − a0 is indeed the diastasis function for the metric g around the origin, i.e. D = Dg
0 . Hence by

formula (25) one gets

e−Φ(z)
=

e−a0

1 +

∞∑
j=1

| f j (z)|2
. (26)
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Furthermore, if

eDg
0 (z) − 1 =

∞∑
j=1

b j |z|2m j , b j ∈ R (27)

is the Taylor expansion of the real analytic function eDg
0 (z) − 1 at the origin, it follows by Lemma 2.8 that b j ≥ 0 for

all j and there exists an infinite sequence of b j ’s different from zero. Let J ⊂ N be the set of all j’s ( j ≥ 1) such that
b j is strictly greater than zero. Set βl =

√
bl for l ∈ J and consider the full holomorphic map of Cn into CP∞ given

by

ψ : Cn
→ CP∞

: z = (z1, . . . , zn) 7→ [1, . . . , βl zml , . . .]. (28)

This map is a isometric. Indeed,

ψ∗(ωFS) =
i
2
∂∂̄ log

(
1 +

∑
l∈J

bl |z|2ml

)
=

i
2
∂∂̄ log eDg

0 = ω.

From (ii) in Theorem 2.7 applied to the maps ϕΦ and ψ we get that there exists a non-vanishing holomorphic function
k on Cn such that the vectors (1, . . . f j (z), . . .) and k(z)(1, . . . βl zml , . . .) are related by a unitary transformation of
l2(C). By (26) and (27) it follows that |k|

2
= 1 and by the open mapping theorem k is a constant. This implies that

(1, . . . βl zml , . . .) is an orthonormal basis for the Hilbert spaceHΦ . In particular, since by hypothesis (ii) zm j belongs
toHΦ for all j ,∫

Cn
e−a0

b j |z|2m j

f (z)
dµ(z) = 1, ∀ j, (29)

where f (z) = eDg
0 (z) = 1 +

∑
∞

j=1 b j |z|2m j .
By taking polar coordinates zα = ραeiθα , α = 1, . . . , n, ρα ∈ [0,+∞), θα ∈ [0, 2π) and by the change of

variables tα = ρ2
α one gets∫

Rn
+

πne−a0
b j tm j

f (t)
dt = 1, ∀ j

where

f (t) = 1 +

∞∑
j=1

b j tm j .

By assumption (5) and Corollary 3.2 we get Φ(z) = a0 + c1|z1|
2

+ · · · + cn|zn|
2 (with c1 · · · cn = πne−a0 )

and therefore the metric g is biholomorphically isometric to the Euclidean metric geucl of Cn via the (linear) map
F : (Cn, g) → (Cn, geucl), z = (z1, . . . , zn) 7→ (

z1√
c1
, . . . , zn√

cn
). �

Remark 3.3. We conjecture that our result holds true also for the more general class of rotation invariant metrics g
on Cn , namely those metrics which admit a Kähler potential which depends only on |z1|

2, . . . , |zn|
2 not necessarily

satisfying Eq. (5). This amounts to proving a result similar to that of Corollary 3.2 without assumption (5).
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